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A QUANTITATIVE STUDY OF A CRYSTALLINE
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Abstract—A discrete aggregate model is applied to the study of theoretical macroscopic response of f.c.c. metal
polycrystals. General, dual inequalities of macroscopic plasticity theory are reviewed and exhibited on subsequent
yield surfaces in both stress and strain space as calculated for aluminum under biaxial straining. Predicted stress—
strain curves are shown corresponding to a partial cycle of loading and reverse loading. The aggregate model
contains several thousand crystallographic slip systems, and all quantitative results are obtained through sequen-
tial solution of constrained quadratic programming problems governing the incremental crystal shears.

1. INTRODUCTION

In [1-3] a discrete model for deformation analysis of crystalline aggregates was developed
in detail. Aspects of uniqueness and convergence of solution and relationships with
theoretical studies by Hill [4, 5] were investigated, and the overall problem (at both small
[1,2] and large [3] strain) was shown to be well-posed within a framework of quadratic
programming. In the present paper we present the results of an initial quantitative study of
this model under biaxial straining for f.c.c. metal polycrystals, specifically aluminum. We
also derive certain explicit equalities connecting microscopic and macroscopic variables
that are pertinent to the obtained results and have not previously been given.

2. GENERAL CONSIDERATIONS

At the outset we define a microscopic continuum point-of-view wherein a crystal
material “‘point” has dimensions of order 1073 mm (i.e. > 10° lattice spacings). This is
consistent with the minimum level at which a continuum mechanics description of plastic
deformation in metals can be judged physically meaningful (see, for example, pertinent
discussions in [3] and [6]). The mechanical behavior is taken to be representable via two
kinematically independent mechanisms of deformation (which are phenomenological
averages of complex processes occurring within the lattice volume defined by the “point™).
These mechanisms are: (a) elastic (mechanically recoverable) infinitesimal strain of the
lattice, and (b) simple glide, on well-defined crystallographic slip systems, which translates
material “lines” of points (i.e. glide packets) relative to one another but leaves the (averaged)
crystal structure unchanged. Restricting the analysis to small strains, the local constitutive
and field equations, in terms of increments, are

88 = DT du = C 8¢+ NT 5y, 1)
ot = H(y) o, 2
+ Now at: Fairbank Highway Research Station, Federal Highway Administration, Washington, D.C.
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and & o = 0 (neglecting inertia and body forces). For a critical (i.e. potentially active) stip
system:

T = To+ f‘ST‘c(r = N,& (3)
otk > N, 8¢, oy, = 0, (4a,b)
Sy (675, — N, 8L) = 0 (for each k). (5)

In these equations { and & are vector representations of micro-stress and strain: { = ({,,,
(22 (30 (V223 (W1 (WD)t & = (Ears Eaze €30 (V2DEaa (V2)Ear- (YDEr). The
operator & is a three by six matrix representation of the spatial gradient, n is the displace-
ment, C is the positive—definite crystal elastic compliance matrix referred to the specimen
axes, and N is the N by six transformation matrix between these axes and the local crys-
tallographic slip systems, N, denoting the kth row vector (see Appendix). The dy are
incremental plastic shears, 7% is a critical shear stress (crystal shear strength) initially
equal to 74, and H(y) is a general crystal hardening matrix [4, 7]. Opposite senses of slip
in the same crystallographic slip system are denoted by distinct k’s so that dy, is always
non-negative. (Throughout the paper, juxtaposition of matrix and vector or vector and
vector implies inner product multiplication.)

Consider a thin-walled metal tube subjected to, say, axial load and internal pressure.
The wall thickness of specimens studied experimentally in combined loading tests is often
in the range 1-2 mm, with from 10-30 grains through the thickness (see [8, 9], for example).
Thus, as an idealization of the physical situation, we assume a thickness of 1 mm and
define a unit cube ¥ = 1 mm? containing on the order 1000 crystal grains in the correspond-
ing *“‘flat sheet” representation (i.e. a macroscopic plane stress problem). Further, we wish
the mathematical model to correspond to a macroscopically homogeneous physical
specimen (that is, one for which strain gage readings, over distances of at least 1 mm on the
surface, are essentially uniform from one location to another). We therefore require all the
unit cubes to deform identically and take the longitudinal and transverse faces to be planes
of symmetry under biaxial macroscopic straining. (For additional discussion see [1].) Thus,
for quasi-static deformation, we adopt as a model for analysis a unit cube (of generally
anisotropic crystals) on each of whose faces either (1) a particular incremental displacement
component is prescribed, to give the appropriate macroscopic strain increment, or (2) the
associated traction is zero.

3. ANALYTICAL AVERAGING

As shown in [1], the model of identically deforming cubes satisfies exactly the following
averaging theorem for statically admissible stress fields and kinematically admissible strain
fields (with a bar above a vector or scalar field denoting the aggregate volume average),

& =LE, (6)
and appropriate definitions of macroscopic stress and strain are

c=2C_ g€=E&. {7a,b)
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(These relationships were derived first by Bishop and Hill [10], based upon a *‘non-correla-
tion” hypothesis, and restated by Kocks [11]. They also are satisfied by boundary conditions
on a macro-element of either uniform loading or uniform constraint, as shown by Hill
[S, 12], and for purposes of theoretical studies (6) may be considered a minimum prescription
of macroscopically uniform fields. For further discussion of the essentially equal viability
of the various postulates of identical deformation, uniform loading, or uniform constraint
see [13].)

Let 6 denote the incremental micro-strain field determined by assuming (hypo-
thetical) elastic response of the aggregate to an imposed macrostrain increment g :

Ot = T 5u® =Y S (8)

in which Y is a tensor (matrix) function of position within ¥V due to the elastic heterogeneity
of the cube. From (6) and (8), a symmetric, inverse elastic compliance matrix of the aggregate
can be defined as [1]

' =YTC Y. 9)

Furthermore, let C{*® denote that portion of the microstrain field that would be recovered
if the specimen could be elastically unloaded to zero macrostress, so that [1]

@ = C1YC,, bo. (10)
Then, (apparent) incremental macroscopic plastic strain is determined as [(6), (9), (10)]
deP = 9E—C oL = o —C,, Jo. (i1)

Denoting {" = {—{“ (the residual microstress field that would remain upon elastic
unloading to ¢ = 0) we find from (6), (7) and (10), corresponding to any é¢ producing slip,

36Cy 66 = SCOC 5L = SLC 8L —8LC 8¢, (12)
Also, from (1), (4a) and (5},
06 g = 6LC 3L+ o7, Y. (13

Thus, upon substituting (11) and (12),

56 88 = dt,, o7+ oL C oC, (14)

and for H(y) at least positive-semidefinite é6 de” > 0, which result was proved by Hill [5]
(although he did not develop an explicit equation for do de? in terms of micro-fields, as
here). The inequality was apparently first set-down as a fundamental postulate of macro-
scopic plasticity theory by Prager [14] and was subsequently argued on the basis of a
concept of material stability by Drucker [15, 16].

We now develop a set of relationships dual to the above. Let {¥ = {—C~'£' denote the
microstress field due to internal slip and self-straining [1] and define incremental macro-
scopic “‘plastic stress” (or “‘negative slip stress”) as

567 = — o0 = €' de—do. (15)
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Then, from (6), (7) and (8), for any ¢ producing slip,
6eC;," 0 = OEOC T 5E@
= 0LC 6L+ 6L°C 60°+ 2 o, Sy. (16)
Thus, substituting from (13) and (15),
3¢ da? = dt,, 0y +0L°C oL, (17)

and we obtain the inequality d¢ d6” > 0. This result does not appear to have been given
previously, although it is pertinent to the ‘‘stress theory” of plasticity proposed by
Trifan [17].

We state without proof the dual orthogonality (or ‘‘generalized normality”) conditions
d6* 6e? < 0 and ég* d6” < 0, which follow immediately from an inequality established by
Hill [5]. (5%, de* are any associated macroscopic pair corresponding to purely elastic
response of the aggregate.) Summarizing, the crystalline aggregate model satisfies the
fundamental macroscopic inequalities

oo ogf > 0, dc* oef < 0 (18a, b)
and their dual pair
o€ o6? > 0, og* o0? < 0. (19a, b)

These results will be exemplified on the calculated subsequent yield surfaces displayed in
Section 6.

In closing this discussion it is worth noting the relationship between (apparent) macro-
scopic plastic strain and the volume average of micro-plastic strain &7 = N7 &y. We find

og? = 6P+ C oC, (20)

which follows from (1) and (11). For an aggregate of hypothetical isotropic crystals C = C,,
and the last term is zero from (7a) (since " is statically admissible under zero macrostress),
whence d¢” reduces to the straightforward volume average 6EP. This is the definition of
macroscopic plastic strain adopted by Lin in an important series of papers (for a complete
bibliography, see his recent review article [18]) and also shown to be an appropriate choice
for this special case by Rice [19]. For an aggregate of orthotropic crystals we return to the
general expression (20) or its equivalent (11).

4. THE QUANTITATIVE MODEL

Introducing the approximation of kinematically admissible, piecewise linear displace-
ment functions, we obtain a discretized model of the heterogeneous aggregate continuum
whose formal solution reduces to the following quadratic programming problem [1].
Minimize the convex functional

I(6T) = 3 6T'P 6T — STNQB, 6U° (21)

t Since submitting the manuscript, the authors’ attention has been called to a paper by R. Hill, Prik. Mat.
Mekh. 35, 31 (1971), wherein the dual inequality and equations equivalent to (14) and (17) are derived.
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subject to oI > 0, where P = H+NQNT is positive-definite over critical systems.
Alternatively, we have the dual problem [3]: maximize — éI'P I subject to

P oI —NQB, 5U° > 0. (22)

In the above, SU° is the vector of prescribed surface displacements corresponding to
incremental macroscopic strain g, oI = (..., dy,....) with g denoting a tetrahedral
crystallite element of volume V,, H = ["H,V, | (i.c. diagonal in sub-matrices),N = [N, _|
(referred to the crystal lattice axes), and

Q = S[I-B,K~'BS] (23)

wherein I is an identity matrix, S = [7C; 'V, ] (again referred to the crystal axes), and
K = BJSB, (the symmetric, positive-definite elastic “stiffness” matrix of the aggregate).
The matrices B; and B, (defined over nodes J of unknown and prescribed displacements,
respectively) are composed of six by three elements B,; = A,,27$)(x) (0if J is not a node
of q). A, is the stress vector transformation matrix from the cube axes x; to the crystal
axes (determined by the grain orientation), and for any J of ¢

dUx) = o) + BJx;. (24)
The repeated suffix indicates summation and the constants a; , ﬁ;‘ are determined from the
nodal coordinates of g through the equations ¢j(x™) = &', J, M =1,...,4, with &M

the Kronecker delta. The model is a rational approximation within polycrystalline plasticity
theory in that discretized stress and strain increment fields strictly converge to the corre-
sponding micro-continuum fields as element sizes are reduced within crystal grains [2].
Successive quantitative solutions of (21) and evaluations of the macro-variables have
been accomplished, followed a prescribed strain path, for an aggregate of f.c.c. aluminum
crystals. Because of extensive computer time and storage requirements the model calcu-
lated was limited to approximately 400 grains within the unit cube, one quadrant of which
is represented in Fig. 1. Each sub-cube contains six equal-volume tetrahedral crystallites,
with a typical one as shown in the figure. The orientations of the crystal lattice axes &,
(<100) in Miller index notation) are defined by the Euler angles ¢, 0,y (see Appendix),

X3

/ /|
K
&
K X /
AT A
{ L J
X, V ,

F1G. 1. One quadrant of unit cube and a typical tetrahedral crystallite.
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these having been chosen for the various grains so as to simulate a statistically isotropic
specimen. Each crystallite has twelve crystallographically equivalent slip systems {111}
(110D, or twenty-four counting opposite senses of slip as distinct systems, giving a total
of 2304 within the quadrant. The faces x; = +1/2 are free and macroscopic biaxial strains
&1, &2, are imposed by specifying uniform normal displacements on the faces x,, x, = /2.
(Wetake x,, x, = 0to be planes of symmetry, hence normal displacements are zero on these
faces.) The influence function Y (equation 8), piecewise constant in the discrete model. is
evaluated from separate elastic solutions for the states ¢,;, = 1, &,, =0 and &,, = 1,
¢;; = 0. The general elastic solution for the strains 0&() is [1, 2]

SE =(...,08<),..) = ATST'QB, sU° (25)

in which A = Ay . (For an exterior ncde J at which only one or two displacement
components are unknown, the super-cclumn of By, in (23) and (25) is divided between
B, and B, .) The classical Taylor hardening rule [20, 21] was adopted for the calculation of
crystal shears, whence H = hl. {1 is an N by N matrix all of whose elements are unity, and
h is a hardening modulus to be discussed in Section 5.)

5. THE COMPUTATIONAL PROBLEM

For the numerical elastic analysis, which is almost trivial, a much finer representation
of the crystalline aggregate could have been selected. The restriction for computational
purposes to the moderately coarse model of Fig. 1 was dictated by considerations of the
magnitude of the plastic analysis, since even with this model one must keep track of a
large number of slip systems throughout the deformation history. To assess the adequacy
of the model’s elastic behavior, we compare computed with expected results as follows.
Since the boundary value problem of the unit cube corresponds to a macroscopic plane
stress state o,;,0,,, only a reduced elastic compliance C,, can be determined from (9).
For a statistically isotropic specimen with a very large number of grains we would have
(Cy)ii = (Ch)yy = VE and (Cyy),, =1i(Cy)sy = —v/E. The values computed for the
quantitative model from (8), (9) and (25), in units of 10”3 mm?/kg, are (C,,);, = 0-1420,
(Cr)zz = 0:1388,(Cr)12 = (Cpg)y; = —0:04985. The first two values differ by less than two
and one-half per cent. Taking their average (0-1404) and converting to psi we obtain
E = 10-15x10% psi, v = 0354 and G = 3-74 x 10° psi. These results probably could be
improved upon without further refining the model because the choice of orientations
(fully described for all grains in [22]) was unnecessarily weighted in favor of the angle v,
and a more balanced distribution relative to the axes x,, x, could have been selected. Be
that as it may, the results were judged acceptable and representative of a nearly isotropic
aggregate specimen.

In developing a computer code for determination of the incremental plastic shears via
(21), several standard quadratic programming routines were considered and compared [22].
The one adopted is a procedure due to Hildreth and D’Esopo, described in [23], for which
it was found convenient to have the full matrix NQNT available in fast access auxiliary
storage. The matrix was maintained at minimum size by redefining both senses of slip as a
single system. The necessary sign modifications follow. Let P5, = N, QN7 denote the
reduced (1152 by 1152) matrix for one quadrant of the cube, wherein N, corresponds to
the arbitrarily chosen positive senses of slip. Also denote F, = N, QB,U°. Consider two
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critical systems j, k within the aggregate and denote the associated elements of PS. by
Pjj>Pix = Pxj» Pux and of F by f;, f;. Then, if k is critical in the positive sense (f, > 0)
whereas jis critical in the negative sense( f; < 0), we can still pose the quadratic programming
problem (21) [or (22)] with both dy; and &7, constrained to be non-negative simply by
changing the signs of p;, = p,; and df;. (If both systems are critical in the negative sense, we
change only the signs of df; and df,.) After the calculations for the shears have been com-
pleted, the signs are changed back (including the sign of y;, which now will be negative)
before calculating the incremental stresses 6§, given by [1, 2]

SE = (..., 08,V,,..) = ATQ(B, 5U°—NT T). (26)

The final step in defining the computational model is the selection of the work-hardening
modulus h, traditionally the slope of the resolved shear stress—strain curve 1(y) from a
tensile (or compressive) test of a single crystal. A representative (but certainly not definitive)
value of 7-5 kg/mm? was chosen, influenced by the general discussions regarding experi-
mental curves for variously oriented single crystals of aluminum in [11] and [24] and taking
into account the restriction of this study to the early stages of plastic deformation in
crystalline aggregates. (The value of initial critical stress 7, is immaterial if we adopt a
consistent, dimensionless presentation of the numerical results, as explained in the next
section.)

6. NUMERICAL RESULTS AND DISCUSSION

It is evident from (21)23), (25) and (26) that the solution to the discrete model can be
expressed in terms of new deformation variables 6U°/(2t,/u), 8v/(21o/1), €/(210/1) and
dimensionless stresses 6/(27,), wherein p is a representative crystal or aggregate elastic
modulus. Moreover, for Taylor hardening [from (2) and (3)]

Tcr 1 h '))k )
=—-4+ ) — . 27
(210)@ 2 Zk:l‘(zfo/# (@)

Thus we conclude that, for a given choice of grain distributions within the aggegate,
results presented in terms of dimensionless variables 6/(27,) and &/(21,/u) are independent
of 7, and depend only upon the parameter h/u. Adoption of these variables herein will
enable us to circumvent the very difficult problem of predicting quantitative levels of
macroscopic yielding comparable to the customary stresses experienced even in soft,
commercially pure aluminum. (Compare, for example, the numerical results in [18].) In
large measure this difficulty can be attributed to what metallurgists call ““grain size effects.”
(See [25] for a critical review.) Hutchinson also has chosen to present all results in dimen-
sionless form in [26], although he variously selects both E and G for p.

The prescribed macrostrain path for the present study of the quantitative aggregate
model is given by Fig. 2, with the macroscopic stress path predicted from the calculations
shown in Fig. 3. The corresponding stress—strain curves are presented in Figs. 4 and 5.
The complete strain path represents more than 500 incremental steps. At point C, just prior
to strain reversal and elastic unloading, 177 slip systems were simultaneously active within
the ninety-six crystallites of the quadrant (Fig. 1). At point E, prior to termination of the
straining sequence, 239 slip systems were active. At point B, corresponding to an abrupt
change in the macrostrain and macrostress paths, the number of active systems dropped
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FI1G. 2. Prescribed strain path.

from 149 to 104 although the same number of systems were critical just before and during

the incremental step.

After solution of the programming problem (21) for a given macrostrain increment, the
new values of resolved shear stresses in all crystallographic slip systems throughout the
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FIG. 3. Predicted stress path.
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Fi1G. 4. Stress-strain curve in x, direction.

aggregate must be determined. Since the &{¢) are known from (25), it is convenient to compute

only changes in t° = NE°. From (25), (26), and the definition of {’, Section 3, we find

T = (..., 815, V,... ) = NQNT oI (28)
a, 1.5
2T B
} O( c A

O.ST

-1.5

3 -|.5{

F1G. 5. Stress-strain curve in x, direction.
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Upon calculation of the new values for 7., and 1%, we locate the kth yield hyperplane in
macrostrain space by the equation [1]

D = (rc,—ri),/HNkC‘IY'H(q, (29)

which gives the distance to the plane whose normal direction is defined by the vector
(N,C~'Y),,. Similarly. from the definition of {" (Section 3).

7, = i+ (N,C7'Y) (- Cyo), (30)
and the distance to the kth yield hyperplane plotted in macrostress space is [1]
D} = (1, — )/ INNCT'YCyll ) (31)

with normal direction (N,C™'Y),C,. A computer code was written to plot these various
planes in the respective macrostress (¢, 6,,) and macrostrain (¢, , &,,) spaces at selected
stages of the deformation, the inner bounds constituting the macroscopic yield surfaces.
Since the aggregate model is nearly elastically isotropic, the initial yield surface in stress
space is very close to the Tresca criterion. (It is exactly the Tresca surface for aggregates
containing a large number of isotropic crystals.) Subsequent yield surfaces are presented in
Figs. 6-8 (stress space) and Figs. 9-11 (strain space) corresponding to points B, C, and E of
the strain path, Fig. 2. In each figure a representative ““fan” defining the range of critical
slip systems at the current stress or strain point is shown and the appropriate incremental
vector pair 6, g? or d¢, da” is displayed. We can see the geometric confirmation of the
macroscopic inequalities (18a, b) on the constructed yield surfaces in stress space, with the
inequalities (19a, b) confirmed on the yield surfaces in strain space. Lastly, in Figs. 12 and 13
the yield surfaces at C and E of Fig. 2 are shown superimposed upon the respective initial
yield surfaces. (Several intermediate yield surfaces are given in [22] together with a detailed
description of all computer codes.)

Qutward cone
! of normals

6g’

J2
2%

C cE Families of
’ critical yield
hyperplanes

-0l -05 0 c.5 1.0
Y
2%
_0.5/
[

Fi1G. 6. Subsequent yield surface in stress space at B, showing incremental stress and plastic strain
vectors.
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FI1G. 7. Subsequent yield surface in stress space at C, showing incremental stress and plastic strain
vectors.

In the interpretation and assessment of the above results, several points should be
borne in mind. First, we are investigating only a model of aggregate behavior (and a dis-
cretized one at that!) based upon a relatively simple though physically descriptive theory.
However, the model is “self-consistent” and the discretization is demonstrably convergent

dz
2 To | '0

Families of
critical yield
hyperplanes

~——

N
Outward
cone of normals

FiG. 8. Subsequent yield surface in stress space at E, showing incremental stress and plastic strain
vectors.
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FIG. 9. Subsequent yield surface in strain space at B, showing incremental strain and plastic stress
vectors.

[2]. Consequently, the model is at the least an appropriate type of idealization for quantita-
tive study. Secondly, the kind of “yield surface” (as limit of purely elastic response) defined
herein can never be measured experimentally, even if the quantitative model could match
a representative specimen volume-element grain by grain. The most precisely defined
yield surfaces attainable through experiment require additional plastic strain increments of
at least several microinches/inch (see [27], for example). At most, these constructed surfaces
are sharply rounded in the vicinity of a stress point, but they do not exhibit the pointed

€2
2T/E
.ot
Outward cone
of normals
05,
6¢g®
6g .
_ * - + . }
05 © 0.5 i.0 15//”\\\ BT E
Family of
critical yield
hyperplanes
~1.0

F1G. 10. Subsequent yield surface in strain space at C, showing incremental strain and plastic stress
vectors.
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FiG. 11. Subsequent yield surface in strain space at E, showing incremental strain and plastic stress
vectors.

Fic. 12. Superposition of initial yield surface (A} in stress space with subsequent yield surfaces at
Cand E.
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2T/
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FiG. 13. Superposition of initial yield surface (A) in strain space with subsequent yield surfaces at
Cand E.

vertices displayed in Figs. 6-8. Nevertheless, we see the characteristic tendencies of macro-
scopic yield surfaces in these figures (e.g. translation, shape change, etc.). Moreover, if we
were to calculate a yield surface based upon a very small but finite amount of additional
plastic strain as criterion (which has been done by Lin and Ito [28] for their model), it is
expected that this surface, too, would exhibit a smooth but sharply rounded curve lying
within the fan of critical systems at the stress point. Finally, it is the predicted stress—strain
curves (rather than yield surfaces) to which one probably should direct the most attention
since their experimental counterparts are less sensitive to differing definitions and measure-
ment techniques. In a future study we intend to pursue a comparison for the case of (nearly)
uniaxial stressing well into the plastic range. (In the present study, with its emphasis on a
partial loading-reverse loading cycle and abrupt changes in strain path, the largest macro-
scopic plastic strain increments computed were only two to three times the corresponding
elastic increments.)
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APPENDIX

The kth row vector of the transformation matrix N is given in terms of unit vectors
n*, b* in the normal and glide directions, respectively, of the kth crystallographic slip system
as

1 1
Nk = |:n‘ib‘i H n'éb‘é s ngbgi —(ngbg + n’éb’;), _‘(n’;b’; + n‘ib’;

Vg N

In terms of N, (corresponding to the lattice axes), N = N_A, with n¥, b¥ defined by the family
of crystallographically equivalent slip systems {111}{110). The six by six transformation
matrix A is determined from the orthogonal lattice orientation matrix Rj; = cos(&;, x;).

1
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Fi16. Al. Euler angles of crystal lattice axes.

From Fig. Al, R is given by
cos ¥ cos  cos ¢ —sin ¥ sin ¢ cosyycosfsinp+sinycos¢ —cosysing
R = | —sinycosfcosp—cosysing —sinycosfsin¢o+cosy cos ¢ sin Y sin @ |.
sin 8 cos ¢ sin 6 sin ¢ cos 6
(A2)

The symmetric, crystal elastic compliance C, for aluminum, in units of 10~ mm?/kg
(as converted from [29]), has elements (C,);; = (C,,, = (C.)33 = 0-1559,(C,),, = (C)y3 =
(C)y3 = —0:0569, (C,)sq = (C.ss = (C,)eg = 0-1726, with all other non-symmetric ele-
ments zero, and we have C = ATC A.

Lastly, the operator & is given by

r(’? 0, 0 0 ! 0 ! 0 ]
1 3 y ) \/2 3 \/2 2
1 1
D=0 a, 0O ﬁas, 0, ?/351 (A3)
0, 0, ¢ L 5 ! ) 0
L y s 3 \/2 2 \/2 19 ]

wherein 9; denotes partial differentiation with respect to the corresponding spatial co-
ordinate.

(Received 19 June 1972)

AGcrpakT—C LEbIO MCCNEeJOBAHHA TEOPETHYECKOr0 MAaKpOCKOMHYECKOTO 110BEJEHHS IPaHEeLleHTPAHpo-
BaHHBIX KYOHYECKHX METAJUTHYECKHX IOJMKPHCTAJUIOB IPHMEHACTCS AMCKPETHAS COBOKYMHAas MOAENb,
Bobuie, IpoBepsAOTCA fyanbHble HEPABEHCTBA MAKPOCKOIIHYECKON TEOPHHM ILIACTHYHOCTH H NIOKA3bIBAIOTCH,
Ha MOCMEAYIOIIHAX TMOBEPXHOCTAX TEYEHHMS, KaK I NPOCTPAHCTBA HAanpshkeHHH Tak ¥ aedbopmaumi, B
KayecTBe PACCYMTAHHBIX ONA ANIOMMHUA NOA BIMAHMEM ABYXOCHOM medopManmnu. VkazaHo, 4To mpen-
CKA3aHHbIE KPHBbIE HanpskeHHs-RedopMauMst COOTBETCTBYIOT YaCTHOMY LIMKJY HArpy3KH H pasrTPy3KH.
CoBOKynHas MOAEL/Ib COUEPXUT B ceGe HECKONBKO THICAY KPHCTANIOrPaPHYECKHX CHCTEM CKOJIBXKEHHSA.
IMonyyaroTcst BCe KOJMYECTBEHHBIE PE3yAbTaThi BCIEACTBHE PELUCHUA 33134 CTECHEHHOTO KBaAPaTHYECKOTO
NPOrpaMMUPOBAHNS, ONPEC/IAIOLIMX TOCTENEHHO HAPACTAIOUIME CABHTH KPHCTAIUIOB.



