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A QUANTITATIVE STUDY OF A CRYSTALLINE
AGGREGATE MODEL

K. S. HAVNER and R. VARADARAJANt

l)epartment of Civil Engineering, North Carolina State University, Raleigh

Abstract-A discrete aggregate model is applied to the study of theoretical macroscopic response of f.c.c. metal
polycrystals. General, dual inequalities of macroscopic plasticity theory are reviewed and exhibited on subsequent
yield surfaces in both stress and strain space as calculated for aluminum under biaxial straining. Predicted stress
strain curves are shown corresponding to a partial cycle of loading and reverse loading. The aggregate model
contains several thousand crystallographic slip systems, and all quantitative results are obtained through sequen
tial solution of constrained quadratic programming problems governing the incremental crystal shears.

1. INTRODUCTION

IN [1-3] a discrete model for deformation analysis of crystalline aggregates was developed
in detail. Aspects of· uniqueness and convergence of solution and relationships with
theoretical studies by Hill [4, 5] were investigated, and the overall problem (at both small
[1,2] and large [3] strain) was shown to be well-posed within a framework of quadratic
programming. In the present paper we present the results of an initial quantitative study of
this model under biaxial straining for f.c.c. metal polycrystals, specifically aluminum. We
also derive certain explicit equalities connecting microscopic and macroscopic variables
that are pertinent to the obtained results and have not previously been given.

2. GENERAL CONSIDERATIONS

At the outset we define a microscopic continuum point-of-view wherein a crystal
material "point" has dimensions of order 10- 3 mm (i.e. > 103 lattice spacings). This is
consistent with the minimum level at which a continuum mechanics description of plastic
deformation in metals can be judged physically meaningful (see, for example, pertinent
discussions in [3] and [6]). The mechanical behavior is taken to be representable via two
kinematically independent mechanisms of deformation (which are phenomenological
averages of complex processes occurring within the lattice volume defined by the "point").
These mechanisms are: (a) elastic (mechanically recoverable) infinitesimal strain of the
lattice, and (b) simple glide, on wen-defined crystallographic slip systems, which translates
material "lines" of points (Le. glide packets) relative to one another but leaves the (averaged)
crystal structure unchanged. Restricting the analysis to sman strains, the local constitutive
and field equations, in terms of increments, are

b~ = @T bu = C b~+NT by,

btcr = H(y) by,

t Now at: Fairbank Highway Research Station, Federal Highway Administration, Washington, D.C.
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and .r;t <5~ = 0 (neglecting inertia and body forces). For a critical (i.e. potentially active) slip
system:

(3)

(4a, b)

(5)

In these equations ~ and ~ are vector representations of micro-stress and strain: ~ = ((11'

(22' (33' (.J2K23' (J2K31' (.J2K12); ~ = (~I1' ~22' ~33' (.J2)~23' (.J2R31 ' (.J2)~d· The
operator ~ is a three by six matrix representation of the spatial gradient, u is the displace
ment, C is the positive-definite crystal elastic compliance matrix referred to the specimen
axes, and N is the N by six transformation matrix between these axes and the local crys
tallographic slip systems, N k denoting the kth row vector (see Appendix). The lrt are
incremental plastic shears, '~r is a critical shear stress (crystal shear strength) initially
equal to '0, and H(y) is a general crystal hardening matrix [4,7]. Opposite senses of slip
in the same crystallographic slip system are denoted by distinct k's so that bYk is always
non-negative. (Throughout the paper, juxtaposition of matrix and vector or vector and
vector implies inner product multiplication.)

Consider a thin-walled metal tube subjected to, say, axial load and internal pressure.
The wall thickness of specimens studied experimentally in combined loading tests is often
in the range 1-2 mm, with from 10-30 grains through the thickness (see [8, 9J, for example).
Thus, as an idealization of the physical situation, we assume a thickness of 1mm and
define a unit cube V = 1 mm 3 containing on the order 1000 crystal grains in the correspond
ing "flat sheet" representation (i.e. a macroscopic plane stress problem). Further, we wish
the mathematical model to correspond to a macroscopically homogeneous physical
specimen (that is, one for which strain gage readings, over distances of at least 1 mm on the
surface, are essentially uniform from one location to another). We therefore require all the
unit cubes to deform identically and take the longitudinal and transverse faces to be planes
of symmetry under biaxial macroscopic straining. (For additional discussion see [1].) Thus,
for quasi-static deformation, we adopt as a model for analysis a unit cube (of generally
anisotropic crystals) on each of whose faces either (1) a particular incremental displacement
component is prescribed, to give the appropriate macroscopic strain increment, or (2) the
associated traction is zero.

3, ANALYTICAL AVERAGING

As shown in [IJ, the model of identically deforming cubes satisfies exactly the following
averaging theorem for statically admissible stress fields and kinematically admissible strain
fields (with a bar above a vector or scalar field denoting the aggregate volume average),

(6)

and appropriate definitions of macroscopic stress and strain are

(7a, b)
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(These relationships were derived first by Bishop and Hill [10], based upon a "non-correla
tion" hypothesis, and restated by Kocks [11]. They also are satisfied by boundary conditions
on a macro-element of either uniform loading or uniform constraint, as shown by Hill
[5, 12], and for purposes of theoretical studies (6) may be considered a minimum prescription
of macroscopically uniform fields. For further discussion of the essentially equal viability
of the various postulates of identical deformation, uniform loading, or uniform constraint
see [13].)

Let bl;(e) denote the incremental micro-strain field determined by assuming (hypo
thetical) elastic response of the aggregate to an imposed macrostrain increment bE:

(8)

in which Y is a tensor (matrix) function of position within V due to the elastic heterogeneity
of the cube. From (6) and (8), a symmetric, inverse elastic compliance matrix of the aggregate
can be defined as [1]

CMI = yTC Iy. (9)

Furthermore, let c~(e) denote that portion of the microstrain field that would be recovered
if the specimen could be elastically unloaded to zero macrostress, so that [1]

(10)

Then, (apparent) incremental macroscopic plastic strain is determined as [(6), (9), (1O)J

(11 )

Denoting ~r = ~ - ~(e) (the residual microstress field that would remain upon elastic
unloading to CJ = 0) we find from (6), (7) and (10), corresponding to any bCJ producing slip,

bCJCMbCJ= b~(e)Cb~(e) = b~Cb~-b~'Cb~r.

Also, from (1), (4a) and (5),

bCJ bE = b~C b~+b'tc' b1.

Thus, upon substituting (11) and (12),

(12)

(13)

(14)

and for H(1) at least positive-semidefinite bCJ bEP > 0, which result was proved by Hill [5J
(although he did not develop an explicit equation for bCJ bEP in terms of micro-fields, as
here). The inequality was apparently first set-down as a fundamental postulate of macro
scopic plasticity theory by Prager [14] and was subsequently argued on the basis of a
concept of material stability by Drucker [15, 16].

We now develop a set of relationships dual to the above. Let ~s = ~ - C-l~(e) denote the
microstress field due to internal slip and self-straining [1] and define incremental macro
scopic "plastic stress" (or "negative slip stress") as

(15)
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Then, from (6), (7) and (8), for any bt producing slip,

btCMI bt = b~(e)c 1 b~(e)

= b~C b~+b~sC b~s+2 btcr by.

Thus, substituting from (13) and (IS),

& bO'P = btcr by +b~sC b~s,

(16)

(17)

and we obtain the inequality bt bO'P > O. This result does not appear to have been given
previously, although it is pertinent to the "stress theory" of plasticity proposed by
Trifan [17].t

We state without proof the dual orthogonality (or "generalized normality") conditions
bO'* btP :::;; 0 and bt* bO'P :::;; 0, which follow immediately from an inequality established by
Hill [5]. (bO'*,bt* are any associated macroscopic pair corresponding to purely elastic
response of the aggregate.) Summarizing, the crystalline aggregate model satisfies the
fundamental macroscopic inequalities

(l8a, b)

and their dual pair

(19a, b)

These results will be exemplified on the calculated subsequent yield surfaces displayed in
Section 6.

In closing this discussion it is worth noting the relationship between (apparent) macro
scopic plastic strain and the volume average of micro-plastic strain b~P == NT by. We find

(20)

which follows from (l) and (11 ). For an aggregate of hypothetical isotropic crystals C = CM

and the last term is zero from (7a) (since ~r is statically admissible under zero macrostress),
whence bEP reduces to the straightforward volume average D~p. This is the definition of
macroscopic plastic strain adopted by Lin in an important series of papers (for a complete
bibliography, see his recent review article [18]) and also shown to be an appropriate choice
for this special case by Rice [19]. For an aggregate of orthotropic crystals we return to the
general expression (20) or its equivalent (11).

4. THE QUANTITATIVE MODEL

Introducing the approximation of kinematically admissible, piecewise linear displace
ment functions, we obtain a discretized model of the heterogeneous aggregate continuum
whose formal solution reduces to the following quadratic programming problem [1].
Minimize the convex functional

(21)

t Since submitting the manuscript, the authors' attention has been called to a paper by R. Hill, Prik. Mat.
Mekh. 35, 31 (1971), wherein the dual inequality and equations equivalent to (14) and (17) are derived.
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subject to Jr ~ 0, where P = H -+- NQN T is positive-definite over critical systems.
Alternatively, we have the dual problem [3J : maximize - Jrp Jr subject to

P <5r - NQBo <5Uo ~ O. (22)

In the above, <5Uo is the vector of prescribed surface displacements corresponding to
incremental macroscopic strain JE, <5r = (... ,JY(q), . ..) with q denoting a tetrahedral
crystallite element ofvolume~, H = IH(q)~ J (i.e. diagonal insub-matrices),N = INc J
(referred to the crystal lattice axes), and

(23)

wherein I is an identity matrix, S = I Cc-
1~ J (again referred to the crystal axes), and

K = BiSB j (the symmetric, positive-definite elastic "stiffness" matrix of the aggregate).
The matrices Bj and Bo (defined over nodes J of unknown and prescribed displacements,
respectively) are composed of six by three elements BqJ = A(q)gcT4>:(x) (0 if J is not a node
of q). A(q) is the stress vector transformation matrix from the cube axes Xi to the crystal
axes (determined by the grain orientation), and for any J of q

J _ J Ji4>ix) - !Y.q +fJq Xi' (24)

The repeated suffix indicates summation and the constants !Y.:, fJ: i are determined from the
nodal coordinates of q through the equations 4>:(xM

) = <5JM
, J, M = 1, ... ,4, with JJM

the Kronecker delta. The model is a rational approximation within polycrystalline plasticity
theory in that discretized stress and strain increment fields strictly converge to the corre
sponding micro-continuum fields as element sizes are reduced within crystal grains [2].

Successive quantitative solutions of (21) and evaluations of the macro-variables have
been accomplished, followed a prescribed strain path, for an aggregate of f.c.c. aluminum
crystals. Because of extensive computer time and storage requirements the model calcu
lated was limited to approximately 400 grains within the unit cube, one quadrant of which
is represented in Fig. 1. Each sub-cube contains six equal-volume tetrahedral crystallites,
with a typical one as shown in the figure. The orientations of the crystal lattice axes ¢J
«100> in Miller index notation) are defined by the Euler angles 4>, e, lj; (see Appendix),

K

FIG. I. One quadrant of unit cube and a typical tetrahedral crystallite.
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these having been chosen for the various grains so as to simulate a statistically isotropic
specimen. Each crystallite has twelve crystallographically equivalent slip systems {Ill:
<tIO), or twenty-four counting opposite senses of slip as distinct systems, giving a total
of 2304 within the quadrant. The faces X3 = ± 1/2 are free and macroscopic biaxial strains
£11' £22 are imposed by specifying uniform normal displacements on the faces x I' X 2 = 1/2.
(We take x I' Xl = 0 to be planes of symmetry, hence normal displacements are zero on these
faces.) The influence function r (equation 8), piecewise constant in the discrete model. is
evaluated from separate elastic solutions for the states £11 = 1, £22 = 0 and ';22 = I,
£11 = O. The general elastic solution for the strains <5~~:~ is [1, 2J

'E(e) - ( '):(e) ) A-TS- IQB "VA
o = ... , o~(q),'" = 0 u (25)

in which A = I A(q) J. (For an exterior node J :It which only one or two displacement
components are unknown, the super-column of Bq] in (23) and (25) is divided between
Bi and Bo.) The classical T:tylor hardening rule [20, 21J was adopted for the calculation of
crystal shears, whence H = hi. (1 is an N by N matrix all of whose elements are unity, and
h is a hardening modulus to be discussed in Section 5.)

5. THE COMPUTATIONAL PROBLEM

For the numerical elastic analysis, which is almost trivial, a much finer representation
of the crystalline aggregate could have been selected. The restriction for computational
purposes to the moderately coarse model of Fig. 1 was dictated by considerations of the
magnitude of the plastic analysis, since even with this model one must keep track of a
large number of slip systems throughout the deformation history. To assess the adequacy
of the model's elastic behavior, we compare computed with expected results as follows.
Since the boundary value problem of the unit cube corresponds to a macroscopic plane
stress state (J 11' (J 22, only a reduced elastic compliance eM can be determined from (9).
For a statistically isotropic specimen with a very large number of grains we would have
(C V )11 = (CMb = liE and ICM)12 = ICvlz l = -v/E. The values computed for the
quantitative model from (8), (9) and (25), in units of 10- 3 mml/kg, are (CM)II = 0·1420,
(CMlz 2 = 0·1388, (CM)12 = (CMlz l = -0·04985. The first two values differ by less than two
and one-half per cent. Taking their average (0·1404) and converting to psi we obtain
E = 10·15 X 106 psi, v = 0·354 and G = 3·74 X 106 psi. These results probably could be
improved upon without further refining the model because the choice of orientations
(fully described for all grains in [22J) was unnecessarily weighted in favor of the angle tit,
and a more balanced distribution relative to the axes x I, Xl could have been selected. Be
that as it may, the results were judged acceptable and representative of a nearly isotropic
aggregate specimen.

In developing a computer code for determination of the incremental plastic shears via
(21), several standard quadratic programming routines were considered and compared [22].
The one adopted is a procedure due to Hildreth and D'Esopo, described in [23J, for which
it was found convenient to have the full matrix NQN T available in fast access auxiliary
storage. The matrix was maintained at minimum size by redefining both senses of slip as a
single system. The necessary sign modifications follow. Let p s+ = N +QNI denote the
reduced (1152 by 1152) matrix for one quadrant of the cube, wherein N + corresponds to
the arbitrarily chosen positive senses of slip. Also denote F + = N +QBoUo. Consider two
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critical systems j, k within the aggregate and denote the associated elements of P'+ by
Pjj,Pjk = Pkj,Pkk and of F+ by ij,k Then, if k is critical in the positive sense Uk > 0)
whereasj is critical in the negative sense (ij < 0), we can still pose the quadratic programming
problem (21) [or (22)] with both bYj and bYk constrained to be non-negative simply by
changing the signs of Pjk = Pkj and bij. (If both systems are critical in the negative sense, we
change only the signs of bij and bfk') After the calculations for the shears have been com
pleted, the signs are changed back (including the sign of bYj' which now will be negative)
before calculating the incremental stresses b~(q) given by [1,2]

b~ == ( ... , b~(q) V q , .. •) = iFQ(Bo bUo_NT bO. (26)

The final step in defining the computational model is the selection ofthe work-hardening
modulus h, traditionally the slope of the resolved shear stress-strain curve T(Y) from a
tensile (or compressive) test of a single crystal. A representative (but certainly not definitive)
value of 7·5 kg/mm 2 was chosen, influenced by the general discussions regarding experi
mental curves for variously oriented single crystals of aluminum in [11] and [24] and taking
into account the restriction of this study to the early stages of plastic deformation in
crystalline aggregates. (The value of initial critical stress To is immaterial if we adopt a
consistent, dimensionless presentation of the numerical results, as explained in the next
section.)

6. NUMERICAL RESULTS AND DISCUSSION

It is evident from (21H23), (25) and (26) that the ')olution to the discrete model can be
expressed in terms of new deformation variables bUo/(2Tol!l), by/(2To/ fl), b~/(2To/ fl) and
dimensionless stresses b~/(2To), wherein fl is a representative crystal or aggregate elastic
modulus. Moreover, for Taylor hardening [from (2) and (3)]

(~) =!+ L~(~) (27)
2To (q) 2 k fl 2To/fl (q)'

Thus we conclude that, for a given choice of grain distributions within the aggegate,
results presented in terms of dimensionless variables 6/(2'0) and t/(2'0/fl) are independent
of To and depend only upon the parameter h/fl. Adoption of these variables herein will
enable us to circumvent the very difficult problem of predicting quantitative levels of
macroscopic yielding comparable to the customary stresses experienced even in soft,
commercially pure aluminum. (Compare, for example, the numerical results in [18].) In
large measure this difficulty can be attributed to what metallurgists call "grain size effects."
(See [25] for a critical review.) Hutchinson also has chosen to present all results in dimen
sionless form in [26], although he variously selects both E and G for fl.

The prescribed macrostrain path for the present study of the quantitative aggregate
model is given by Fig. 2, with the macroscopic stress path predicted from the calculations
shown in Fig. 3. The corresponding stress-strain curves are presented in Figs. 4 and 5.
The complete strain path represents more than 500 incremental steps. At point C, just prior
to strain reversal and elastic unloading, 177 slip systems were simultaneously active within
the ninety-six crystallites of the quadrant (Fig. 1). At point E, prior to termination of the
straining sequence, 239 slip systems were active. At point B, corresponding to an abrupt
change in the macrostrain and macrostress paths, the number of active systems dropped
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FIG. 2. Prescribed strain path.

from 149 to 104 although the same number of systems were critical just before and during
the incremental step.

After solution of the programming problem (21) for a given macrostrain increment, the
new values of resolved shear stresses in all crystallographic slip systems throughout the
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FIG. 3. Predicted stress path.
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FIG. 4. Stress-strain curve in Xl direction.
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aggregate must be determined. Since the ;i:l are known from (25), it is convenient to compute
only changes in t S = N~s. From (25), (26), and the definition of ~s, Section 3, we find

JTs == (... , Jt(q)~, ...) = NQN T Jr. (28)
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FIG. 5. Stress-strain curve in Xl direction.
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Upon calculation of the new values for rcr and t S
, we locate the kth yield hyperplane in

macrostrain space by the equation [IJ

DZ = (rcr-r~)/IINkC-IYII(q) (29)

which gives the distance to the plane whose normal direction is defined by the vector
(NkC- I Y)(q)' Similarly, from the definition of ~r (Section 3),

r~ = r~ +(NkC- I Y)(qj(t-CMO"), (30)

and the distance to the kth yield hyperplane plotted in macrostress space is [IJ

D~ = (rcr-r~)/IINkC-IYCMII(q) (31)

with normal direction (NkC- I Y)(q)C M . A computer code was written to plot these various
planes in the respective macrostress ((J'II' (J'22) and macrostrain (£ 11 , £22) spaces at selected
stages of the deformation, the inner bounds constituting the macroscopic yield surfaces.
Since the aggregate model is nearly elastically isotropic, the initial yield surface in stress
space is very close to the Tresca criterion. (It is exactly the Tresca surface for aggregates
containing a large number of isotropic crystals.) Subsequent yield surfaces are presented in
Figs. 6-8 (stress space) and Figs. 9-11 (strain space) corresponding to points B, C, and E of
the strain path, Fig. 2. In each figure a representative "fan" defining the range of critical
slip systems at the current stress or strain point is shown and the appropriate incremental
vector pair JO", JeP or Je, c5O"P is displayed. We can see the geometric confirmation of the
macroscopic inequalities (18a, b) on the constructed yield surfaces in stress space, with the
inequalities (19a, b) confirmed on the yield surfaces in strain space. Lastly, in Figs. 12 and 13
the yield surfaces at C and E of Fig. 2 are shown superimposed upon the respective initial
yield surfaces. (Several intermediate yield surfaces are given in [22J together with a detailed
description of all computer codes.)

Outward cone
of normals

0'2 6f P
2To

1.0 6ft

/ 0'" Families of.,
critical yield
hyperplanes

-1.0 -0.5 0 0.5
0'1

2To
-0.5

-1.0

FIG. 6 Subsequent yield surface in stress space at B. showing incremental stress and plastic strain
vectors.
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FIG. 7. Subsequent yield surface in stress space at C, showing incremental stress and plastic strain
vectors.

In the interpretation and assessment of the above results, several points should be
borne in mind. First, we are investigating only a model of aggregate behavior (and a dis
cretized one at that 1) based upon a relatively simple though physically descriptive theory.
However, the model is "self-consistent" and the discretization is demonstrably convergent

1.0

\.0

-0.5

-1.0

-1.5

Outward
cone of normals

FIG. 8. Subsequent yield surface in stress space at E, showing incremental stress and plastic strain
vectors.
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0.5

0.5
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of critical
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-~=---4---=,--=---::+---~=------:l-~-
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FIG. 9, Subsequent yield surface in strain space at B, showing incremental strain and plastic stress
vectors.

[2]. Consequently, the model is at the least an appropriate type of idealization for quantita
tive study. Secondly, the kind of "yield surface" (as limit of purely elastic response) defined
herein can never be measured experimentally, even if the quantitative model could match
a representative specimen volume-element grain by grain. The most precisely defined
yield surfaces attainable through experiment require additional plastic strain increments of
at least several microinches/inch (see [27J, for example). At most, these constructed surfaces
are sharply rounded in the vicinity of a stress point, but they do not exhibit the pointed

-1.0

FIG. 10. Subsequent yield surface in strain space at C, showing incremental strain and plastic stress
vectors.
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critical yield
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FIG. II. Subsequent yield surface in strain space at E, showing incremental strain and plastic stress
vectors.

1.5

FIG. 12. Superposition of initial yield surface (A) in stress space with subsequent yield surfaces at
C and E.
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-!L.
2To/E

1.0

-1.5

FIG. 13. Superposition of initial yield surface (A) in strain space with subsequent yield surfaces at
C and E.

vertices displayed in Figs. 6-8. Nevertheless, we see the characteristic tendencies of macro
scopic yield surfaces in these figures (e.g. translation, shape change, etc.). Moreover, if we
were to calculate a yield surface based upon a very small but finite amount of additional
plastic strain as criterion (which has been done by Lin and Ito [28J for their model), it is
expected that this surface, too, would exhibit a smooth but sharply rounded curve lying
within the fan of critical systems at the stress point. Finally, it is the predicted stress-strain
curves (rather than yield surfaces) to which one probably should direct the most attention
since their experimental counterparts are less sensitive to differing definitions and measure
ment techniques. In a future study we intend to pursue a comparison for the case of (nearly)
uniaxial stressing well into the plastic range. (In the present study, with its emphasis on a
partial loading-reverse loading cycle and abrupt changes in strain path, the largest macro
scopic plastic strain increments computed were only two to three times the corresponding
elastic increments.)
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APPENDIX

The kth row vector of the transformation matrix N is given in terms of unit vectors
ok, bi in the normal and glide directions, respectively, of the kth crystallographic slip system
as

In terms ofNe(corresponding to the lattice axes), N = NeA, with o~, b: defined by the family
of crystallographically equivalent slip systems {ill}<IIO), The six by six transformation
matrix A is determined from the orthogonal lattice orientation matrix RJi = cos(eJ' xJ
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FIG. A I. Euler angles of crystal lattice axes.

From Fig. AI, R is given by

l
cos ljJ cos 0 cos </> - sin ljJ sin </>

R = - sin ljJ cos 0 cos </> - cos ljJ sin </>

sin 0 cos </>

cos ljJ cos 0 sin </> +sin ljJ cos </>

- sin ljJ cos 0 sin </> +cos ljJ cos </>

sin 0 sin </>

-cos ljJ sin OJ

sin ljJ sin 0 .

cos 0
(A2)

The symmetric, crystal elastic compliance Cc for aluminum, in units of 10- 3 mm 2/kg
(as converted from [29]), has elements (CJl1 = (CJ22 = (Cch3 = 0·1559, (CJ12 = (Cc)13 =
(CJ23 = -0·0569, (Cc)44 = (CJss = (Cc)66 = 0·1726, with all other non-symmetric ele
ments zero, and we have C = ATCcA.

Lastly, the operator ~ is given by

1 1
°1 , 0, 0, 0, .)2°3' .)2°2

1 1
~= 0, °2' 0, .)2°3' 0, .)2° 1 (A3)

1 1
0, 0, °3' .)2°2, .)2°1 ,

0

wherein OJ denotes partial differentiation with respect to the corresponding spatial co-
ordinate.

(Received 19 June 1972)

A6cTpaKT-C I.\eJIblO JilCCJIe,LIOBaHHR TeOpeTH'leCKOrO MaKpOCKOnH'IeCKoro IIOBe,LIeHHR rpaHeI.\eHTpaJilpO

BaHHbIX Ky6H'leCKHX MeTaJIJIHlfecKHX nOJIHKpJilCTaJIJIOB npHMeHReTCR ,LIHCKpeTHaR cOBOKynHaR MO,LIeJIb,

Bo6lI.\e, npOBepRIOTCR ,LIyanbHbIe HepaBeHCTBa MaKpocKonHlfecKoli TeopHH UJIaCTH'lHOCTH JiI nOKa3bIBaIOTCR,

Ha nOCJIe,LIYI0lI.\HX nOBepXHOCTRX TelfeHHR, KaK ,L\JIR npOCTpaHCTBa HanplIlKeHHli TaK JiI ,LIec\lopMal.\Hli, B

KalfeCTBe paCClfHTaHHbIX ,LIJIlI aJIIOMHHHlI no,LI BJIHlIHHeM ,LIBYXOCHOK ,LIe4lopMaI.\JilH. YKa3aHO, 'ITO npe,LI

CKaJaHHbIe KpJilBbie HanplIlKeHHR-,lIe4l0pMaI.\lflI COOTBeTCTBylOT 'laCTHoMy I.\HKJIY Harpy3KH H pa3rpY3KH.

COBoKynHalI MO,lleJIb CO,lleplKHT B ce6e HeCKOJIbKO TbIClIlf KpHCTaJIJIOrpa4lHlfecKHx CHCTeM CKOJIblKeHHlI.

nOJIy'lalOTcR Bce KOJIH'IeCTBeHHble peJyJIbTaTbl BCJIe,LICTBHe pelI.\eHHlI 3a,LIalf cTecHeHHoro KBa,LIpaTH'IecKoro

nporpaMMHpOBaHHlI, onpe,lleJIlilOlI.\HX nOCTeneHHO HapaCTalOlI.\He C,lIBJilrH KpHCTaJIJIOB.


